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Abstract—Time series behavior of gas consumption is highly
irregular, non-stationary, and volatile due to its dependency
on the weather, users’ habits and lifestyle. This complicates
the modeling and forecasting of gas consumption with most of
the existing time series modeling techniques, specifically when
missing values and outliers are present. To demonstrate and
overcome these problems, we investigate two approaches to
model the gas consumption, namely Generalized Additive Models
(GAM) and Long Short-Term Memory (LSTM). We perform our
evaluations on two building datasets from two different conti-
nents. We present each selected feature’s influence, the tuning
parameters, and the characteristics of the gas consumption on
their forecasting abilities. We compare the performances of GAM
and LSTM with other state-of-the-art forecasting approaches.
We show that LSTM outperforms GAM and other existing
approaches, however, GAM provides better interpretable results
for building management systems (BMS).

Index Terms—Gas Forecasting, Deep Learning, Long Short
Term Memory, Generalized Additive Model, Forecasting

I. INTRODUCTION

Gas consumption forecasting has emerged as a potential

approach to enhance energy management by balancing supply

and demand, improve investment planning, and for more

rational price bidding. There are four types of consumers,

namely, residential, commercial, industrial, and electric power

generation stations. The residential sector has the highest

necessity for natural gas usage followed by commercial, in-

dustrial and power generation respectively [1]. In present days,

commercial buildings are adopting smart building management

technologies. They help combine sensors and software solu-

tions to manage energy, retrofit heating, ventilation, and air

conditioning (HVAC), lighting, access control etc. These are

steps taken by the companies to reduce operating cost and

to improve the safety and security of the employees. HVAC

control is one of the most important aspects of Building Man-

agement Systems (BMS). We envision that a gas consumption

forecasting model specific to a building will be a part of a

Building Management System (BMS), e2Diagnoser [2]. The

e2Diagnoser is a real-time data mining system for the energy

management of smart, sensor-equipped buildings. It predicts

energy consumption at the sub-meter level and diagnoses

abnormal energy leakage. Commercial buildings have periodic

gas usage which varies depending on the time of the day,

occupancy, weather and scheduling periods. HVAC usage

forecasting is useful for optimizing peak usage by shifting

the preheating and precooling hours as suggested in [3].

There is no known literature that addresses the issue of

forecasting for large commercial buildings. However, prior

works focus on forecasting in citywide cases. The most com-

mon approaches are variations of auto-regressive models, for

example, Auto-regressive moving average (ARIMA), seasonal

auto-regressive moving average (SARIMA) and seasonal auto-

regressive moving average with exogenous input (SARIMAX),

or Artificial Neural Networks (ANN), or a combination of

SARIMA and ANN. The SARIMA models the historicity of

the data and the ANN captures the non-linearity [4], [5]. We

also take inspiration from works on building energy modeling

and forecasting as it has close ties to gas usage [6], [7].

In this paper, we propose two approaches for building gas

usage forecasting Generalized Additive Model (GAM) and a

Deep Learning variant knows as Long-short term memory

network (LSTM), and compare the results with the latest

approaches. GAM allows representing each feature influenc-

ing the gas consumption by an identifiable and interpretable

transfer function, represented by spline basis. The interpolation

characteristics of GAM help to simultaneously address the

problem of missing values and outliers. Also, GAM presents

the relationship between data and it’s covariates in an in-

terpretable form which allows gaining insight regarding gas

usage [8]. The LSTM exploits the use of several processing

layers in the network to discover complex patterns in the gas

consumption data, where each layer learns a particular concept

that used by the subsequent layers.

We test the proposed approaches on two real-world building

gas consumption datasets which have different characteristics

and usage patterns. We perform a day ahead forecast and ex-

plain in details the various assumptions and analytics required

to make the algorithms work for the different datasets, and

compare the results with the existing state-of-the-art methods

like Recurrent Neural Network (RNN), Random Forest (RF),

SARIMA, SARIMAX, and Linear Regression (LR).

The rest of the paper is organized as follows. Section II

reviews some prior works on time series modeling and fore-

casting, particularly in the context of energy consumption. In

Section III, we place the emphasis on the different methods

used for gas consumption forecasting. We present our case

study in Section IV, where we interpret our dataset, present

the preprocessing approach and the feature selection method.

We present two test cases of gas consumption obtained from

buildings and explain the application of GAM and LSTM to
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the gas data, and evaluate the performance of LSTM compared

to GAM, RF, SARIMAX, and LR. The conclusions and future

works is addressed in Section V.

II. RELATED WORKS

In this section, we review some of the works related to

building gas forecasting. This includes gas forecasting gas

consumption on a city-wide scale, building electricity load

prediction and the applications of GAM and Deep Learning.

Prior works on gas-forecasting primarily focus on city-wide

cases [4]. Two common methods, for forecasting, are the

usage of ARIMA or ANN models or both. ARIMA models

the temporal nature of the data and ANNs can model the

stochasticity in data. A comparison of the two methods in [9]

shows that ANN provides better results than ARIMA because

it can capture the non-linearity in the data. However, a two-step

modeling achieves better results [5]. Here, ARIMA models

the auto-regressiveness in the data and ANNs captures the

complex nonlinearities.

Deep Learning algorithms are extensions of ANNs, partic-

ularly the variants of recurrent neural networks (RNN) are

more applicable to time-series analytics. For example, in [10],

predicted energy usage using RNN. LSTM [11] is a variant of

RNN, particularly useful for time series modeling because it

does not suffer from the problems of vanishing gradient, unlike

simple feed-forward networks and recurrent neural networks.

Another class of algorithms which is quite popular for

forecasting is Generalized Additive Models (GAM) [8]. The

benefit of GAM over most of the other forecasting models is

its ability to model complex features with transfer functions,

which is useful for visualization and interpretation. Gehrke

cites the interpretability as one of the major challenges in

data science [12]. It enables analyst and operators to better un-

derstand the driving forces behind their energy consumption.

In prior works, GAM was used for electricity consumption

modeling [13], for forecasting in [6], [7] and for both in [14].

We perform a day ahead gas usage forecast using the GAM

and LSTM and compare the results with RNN, SARIMA,

SARIMAX, LR, and RF.

III. APPROACHES

In this section, we present our forecasting methodologies

for gas consumption forecasting: GAM and LSTM. GAM

is effective for modeling electricity usage for buildings in

earlier work and it is interpretable. We choose LSTM as a

recurrent neural network which has been effective in time

series analytics and proposes a multivariate single step and a

multivariate multi-step time series forecasting LSTM models.

A. GAM

In this section we review the Generalized Additive Models.

GAM has the following form:

yt =

I∑

i=1

fi(xt) + εt (1)

In this formulation, xt is a vector of covariates which either

is categorical or continuous. yt is the dependent variable,

which is continuous. The noise term εt is assumed Gaussian,

independent and identically distributed with mean zero and

finite variance. The functions fi are the transfer functions of

the model, which are of the following types: constant (exactly

one transfer function, representing the intercept of the model),

categorical, or continuous. The continuous transfer functions

are either linear functions of covariates (representing simple

linear trends) or smoothing splines. An interesting possibility

is to combine smoothing splines with categorical conditions;

in the context of gas consumption modeling, this allows, e.g.,

for having different effects of the time of the day depending

on the day of the week. In our work, we chose GAM with 1-d

cubic spline basis (see [8], [14] ). These spline representations

allow GAM to work under random missing data or outliers

exist.

In our experiments, we use 1-dimensional cubic splines,

which allows us to write the smoothing splines in the following

form

fi(xt) = β
T
i bi(xt) =

Ji∑

j=1

βijbij(xt) (2)

where βij are the spline coefficients and bij are the spline

basis functions which depend on 1 or 2 components of xt.

Note that a (fixed) sequence of knot points define the basis

functions. The measure Ji in equation (1) is the number of

spline coefficients associated with the transfer function fi.

Now, let β denote the stacked vector containing the spline

coefficients, and b(xt) the stacked vector containing the spline

basis functions of all the transfer functions.

Baseline GAM prediction with Auto-regressive models:

The prior approaches in [13], [15] took a two-step approach

where the exogenous and the general electricity usage behavior

were modeled using GAM. The residuals are modeled with

auto-regressive models like ARMA and Auto-Regressive Con-

ditional Heteroskedasticity (AR-ARCH) models respectively,

to model the temporal for obtaining the prediction bands. We

proposed three versions of GAM -

• Baseline GAM explains the general behavior of the usage

integrating the exogenous variables

• Hierarchical GAM is a two-stage approach, where the au-

toregressive models capture the temporal behavior of the

baseline GAM’s residuals. As the residuals have multiple

seasonality we apply Seasonal ARIMA (SARIMA) and

Double-Seasonal Holt-Winters Forecasting (DSHW) [16]

depending on the type of seasonality present.

• Auto-regressive GAM is a combination of an autoregres-

sive model and the baseline GAM.

B. Deep Learning: LSTM

A recurrent neural network (RNN) is a type of artificial

neural network (ANN) which has a feedback loop and is

capable of storing information. RNN is a feed-forward neural

network, which repeatedly returns the output of the same layer

through time. It deconstructs into multiple layers of recurrent

network where each layer corresponds to a given time step.

This gives rise to a problem known as vanishing gradient

problem. Since the network uses backpropagation, in a large
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network, it results in an exponential decrease of the gradient

through time which leads to the network to train very slowly.

LSTM [11] is a special type of RNN which capable of learning

long-term dependencies and thus mitigates the problem. The

long-term dependency is particularly interesting in our study,

as gas usage shows seasonality across different periodicity -

daily, weekly and monthly.

We construct two LSTM models, where the first one acts

like a regression model that consists of a single output model

that forecasts the consumption at time t, yt. It is a multivariate

time series forecasting model. The second model is a multi-

variate multi-step forecasting model that has far fewer features

than the other models and provides a multi-step (24-hour ahead

forecast). The intuition here is that given the auto-regressive

and exogenous data over time, the deep learning can forecast.

In the Analysis section, we discuss the individual models in

more details tailored to the individual datasets.

IV. ANALYSIS

We evaluate how our approaches perform on a real dataset

obtained from a building. We present two case studies, where

the first one is from a building and have weather data.

The second case study is done, gas dataset is from publicly

available dataset, from Lawrence Berkeley National Lab cam-

pus. For both the case studies,we describe the building, the

associated features and the details regarding the data in the first

subsection. Subsequently, we delve into the characteristics of

the dataset and the adopted processing mechanism. Finally,

we evaluate the performance of GAM and LSTM for the

forecasting of gas consumption.

A. Case Study Building 1: IBM B3 Building

Our study is conducted with the dataset obtained from a

building. The dataset that we use is 6 years old building which

is actively occupied by around 200 employees. There are 2,500

sensors installed within this 3,300 sq meter to provide real-

time data on heating and cooling systems, lighting, water,

gas and electricity meters, footfall and motion. We consider

the data within 2012 to 2016, a total of 19000 observations.

Besides these measurements, weather information like solar

luminescence, humidity, temperature and wind speed are also

captured by some of these sensors.

1) Dataset: We use more than 4 years of gas consumption

time series data having an hourly granularity. The amplitude

of the consumption for 2012 is different from those of 2015-

2016. The startup consumption changed from 2012 to 2016,

as a new unit was added to the building, bringing in more

users, which requires more heating in the starting phase. In

general, there is no consumption on the weekends but on

Sundays, the system starts at late night to heat up the building

overnight, which results in the highest peak over the week. One

of the major challenges is the presence of missing data due

to faults in recording data. The other exogenous factors used

are solar luminescence, humidity, outside air temperature and

wind speed. The fundamental characteristics of the dataset are

- no consumption data at night, as the control system switches

off the boiler. This is followed by a sharp peak in the morning

for preheating the building before work hour starts. Then, the

amplitude of the gas consumption decreases when the building

reaches the set temperature and takes a stochastic nature to

maintain the setpoint.

2) Data Cleaning- Missing data handling & Outlier re-

moval: The dataset presents several irregularities and is highly

noisy which requires processing before any exploration. Fur-

thermore, the dataset exhibits several discontinuous lasting

several hours and sometimes days, and many missing gas

consumption data. Also, random missing data is present when

the boiler operates. The boilers don’t work from the evening

till the next morning, for which we assign the values to zero.

If there is missing data during the operation hours we use

splines to interpolate the missing values. We assume that the

values of the time series that are higher than (µ + 3 * σ ; µ

: mean, σ : standard deviation) are anomalies, and consider

them as missing data and interpolate those values.

TABLE I: List of features with correlation with gas consump-

tion

Features Used Type Symbols Correlation
Coefficient

Solar
luminescence

Exogenous LUX 0.132

Wind speed Exogenous Wind 0.053

Humidity Exogenous Humidity -0.017

Outside Air tem-
perature

Exogenous OAT -0.30

Time of Day Heuristic TOD -

Hour Heuristic hr -

Day Heuristic D -

Month Heuristic m -

LastWeekGas Autoregressive xt−168 0.72

LastDayGas Autoregressive xt−24 0.49

HourLastOn Heuristic ON -

3) Features Extraction: In Table I, we list the features used.

Solar luminescence (LUX), outside air temperatures (OAT),

wind speed (Wind) and Humidity are the exogenous weather

features. LastWeekGas (xt−168) is the gas consumption in the

same hour on the previous week while LastDayGas (xt−24)

is the consumption for the same hour on the last day. We

computed the Pearson correlation coefficients between the

features and the gas consumption to find the most influential

features. Table I shows that the most influential features

are LastWeekGas and LastDayGas, and the least ones are

Humidity and Wind. The better Pearson correlation coefficient

for LastWeekGas is better than LastDayGas, as the latter

does not capture the gas consumption patterns associated

with the weekends when the boilers are not operating. The

exogenous variables LUX and OAT have some correlation with

the gas consumption but is much lower for Humidity and Wind.

We constructed another temporal feature HourLastOn, which

measures the last time the gas in the previous day at the same

hour. We inspected the data for seasonality and found three

types of seasonality - daily, weekly and yearly. We considered

two lags - 24 hours (daily lag) and 168 hours (weekly lag),

and found both seasonality is present from the autocorrelation
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function (ACF) and partial autocorrelation (PACF) plots of the

differenced series.

4) Choice of Metrics: We compare with three standard

metrics used for evaluating forecasting - Root Mean Square

Error (RMSE), Normalized Mean Square Error (NRMSE)

and Coefficient of Determination (The R-squared measure of

goodness of fit).

5) Analysis of GAM: We start with the analysis of the

effects of the exogenous and temporal variables on the gas

consumption. Then, we apply our approach to 24 hours ahead

forecasting. In IV-A2, we showed the features selected, in this

section, we show their effects on forecasting. Challenges of

building GAM models for forecasting the gas dataset are:

• Averaging the effect of peaks: As GAM is essentially

based on using splines, it consequently averages the

sudden peaks. By adjusting the number of knot points of

the transfer functions we can change the characteristics

of the splines.

• Anomalous forecasts of weekends: The boilers are

generally stopped at night and on weekends. Although

there is a general schedule where there is no consumption

on weekends, for some weekends some boilers operated

like weekdays, which makes the forecasting difficult.

• GAM formulation: We introduce the exogenous vari-

ables one by one and check the improvement on test error,

and the deviation in training and testing errors.

6) Quantitative Evaluation: In this section, we explain and

compare the results of the different GAM based models,

baseline GAM and DSHW model and the auto-regressive

GAM model.

a) Baseline Modeling: We investigated the different autore-

gressive, heuristic and exogenous features. Here, we show

the GAM performance for each feature. To capture the tem-

poral dependencies, we use temporal features TimeofDay,

Day, month and isWeekend. The baseline that gave the best

validation error is given as -

yt ∼ s(hour, k = 24, by = Day) + s(OAT, by = TOD)

+ s(LUX, by = TOD) + s(ON, by = TOD) + TOD + D + M (3)

The exogenous weather features used were OAT and LUX.

The weather feature OAT is efficient, while adding LUX

combined with OAT doesn’t increases the training and cross-

validation error, the test error does not increase significantly.

Adding the temporal feature HourLastOn also improves the

training and cross-validation errors, but does not cause sig-

nificant increase in test error. The formula s(hr/Dayk=24) +

s(OAT/TOD) gives the best test error.

b) Residuals modeling: The residuals of the baseline GAM

model is then used to forecast the auto-regressive part. The

data have double seasonality at 24 and 168 hours for which

we used DSHW to forecast 24 hours ahead, using the residuals

for the last two weeks. DSHW is an additive exponential

smoothing approach, where a model for the additive seasonal

HW method decomposes the series value yt into an error εt, a

level lt, a trend bt and a seasonal component (st), as per the

following equations:

RMSE NRMSE R-sq
Method Eqn No. Train Test Train Test Train Test

Baseline
GAM

(9) 10.64 18.68 0.13 0.25 0.73 0.60

Baseline
GAM +
DSHW

(9) +
DSHW

- 15.5 - 0.10 - 0.73

Auto re-
gressive
GAM

(17) 10.77 13.84 0.12 0.12 0.73 0.76

TABLE II: Comparison of Baseline, Baseline Autoregressive

and Autoregressive GAM

yt = lt−1 + bt−1 + st−m + εt (4)

lt = lt−1 + bt−1 + st−m + αεt (5)

bt = bt−1 + βεt (6)

st = st−m + γwεt (7)

where εt ∼ N(0, σ2), and α, β and γw are smoothing

parameters for the level, trend and seasonal terms, respectively.

The value m represents the number of seasons in one seasonal

cycle. Thus, for hourly data, we get a HW(24) model that has

a cycle of length 24 (a daily cycle). The result of modeling

the residual with DSHW is given in Table III.

c) Auto-regressive GAM: We hypothesized that an auto-

regressive GAM is equally applicable for forecasting. The

following equation gives the best result -

yt ∼ LastWeekGas + s(OAT, by = TOD) + s(LUX, by = TOD)

+ s(ON, by = TOD) + TOD + D + M (8)

The most significant feature that helps to model the data OAT

and adding the HourLastOn further improves the performance.

The feature LUX also improves the results but the difference is

not that significant. We do not vary the knot points for GAM

as we found experimentally that it does not add any benefit.

d) Comparison: In Table III, the results of the three models

have been compared. The multi-stage GAM model constructed

with the GAM and DSHW outperforms the baseline model.

However, the auto-regressive GAM performs better than the

multi-stage GAM. The DSHW also is more complex to model,

to forecast 24 hours ahead as it requires at least 336 data

points and every time we have to retrain the model on the

new residuals. We found that an additive model with both

auto-regressive factors - daily and weekly can perform better

in terms of training and validation error, however, the test

error does not get any better. The best model for GAM gives

a training, testing and validation error of 10.64, 13.85 and

11.55 respectively. Table II shows the results for the three

versions of the GAM.

7) Qualitative analysis: Now we look into the qualitative

analysis of GAM by inspecting the transfer functions. We

understand the general nature of the hourly consumption for

the different Day classes in Figures 1a-1d. In general, on

Saturdays, there is no consumption. On Sundays, the boiler

does not work almost the entire day except at night, when
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(d) Sunday

Fig. 1: Hourly consumption using transfer functions for a

GAM model of the different Day classes.

there is a huge spike of consumption, which is because the

building needs pre-heating as the boiler is off for almost two

days. The Mondays’ consumptions are different from the rest

of the weekdays. This helps us to construct the TimeofDay and

Day features. We can approximate the range of hours for each

category of TimeofDay by observing the transfer functions.

We categorize the TimeofDay feature in three-time regimes -

night-time when boiler is off, pre-heating time during the start

of the day, and the normal daytime usage. For the Day feature,

we observed that Tuesday to Friday has similar characteristics

and we choose as one category, while Monday, Saturday, and

Sunday have unique features of their own, and we consider

each of them as separate categories.

8) Analysis of LSTM: In the Section IV-A5, we described

our approach to modeling and forecasting gas consumption

with GAM. In this section we evaluate the results of gas

consumption forecasting using the LSTM. LSTM captures the

high level abstraction of the features which allows it to deal

with the complexities of the gas consumption. We propose two

versions of LSTM for single step and multi-step forecasting.

The considerations to model gas consumption using LSTM

are:

• Model Selection: We experimented different models and

came across two different structures for LSTM. The

first one is an LSTM network with 1-D input and 1-

D output, the objective of which is too see how well

the LSTM performs in a regression like forecasting. In

the second LSTM model, we provided the network with

a 24-hour time-step input for each the previous week’s

consumption, the previous day’s consumption and the

temperature data of the day and obtain a 24-hour ahead

forecast. In Section III-B we provided a brief overview

of LSTM.

• Set of Features: GAM provides us with some insights

into selecting the features of LSTM. In LSTM we select

the subset of features which provides us with the best

outcome, with the objective of choosing the least number

of features for generating the results.

• Comparison of results with GAM: We compared the

generalization error, testing error and the feature set

between GAM and LSTM. The objective here is check

how much accuracy can we achieve using LSTM over

GAM.

9) Model 1 : Multivariate time-series Forecasting with

LSTM: We experimented several recurrent models and settled

for the following model for forecasting:

• Input: We make sure that the data for at least every month

is available.

• LSTM layer 1 with nodes N = 64.

• Stacked LSTM layer 2 with nodes N = 64.

• Fully connected layer with 1 output node and linear

activation function.

At each time step, the network receives a vector of input

data and outputs a single sample of gas consumption for

the target hour for the next day. We use different set of

combinations of the following features {LastWeekGas, Last-

DayGas, TimeofDay, Month, Day, LUX, OAT, HourLastON},

and we also add Humidity and Wind to evaluate the LSTM

performance over GAM and noted the performance of the

forecasting decreases also in this case. We represent the LSTM

Model 1 as: < xt−168, xt−24, OAT, LUX, TOD, D, M, ON

>→ yt.

10) Model 2: Multivariate Time-Series & Multi-step fore-

casting: In this section, we frame the task of forecasting

as a pattern matching the task to achieve a multi-step-ahead

forecast. The objective is to forecast the entire day’s gas

consumption as a pattern when the input provided is the entire

day’s data from the same day of the previous week and the day

before, along with the outside air temperature. The outside air

temperature has a negative correlation with gas consumption,

as presented in Table I. However, it is a lagged correlation and

the lag varies over different time of the year. We represent the

Multi-step forecasting model as follows -

1) Input: 24 hour data <{LastWeekGas, LastDayGas, OAT>

We make sure that the data for at least every month is

available.

2) LSTM layer 1 with nodes N = 48 and ReLu activation

function.

3) Stacked LSTM layer 2 with nodes N = 24 and ReLu

activation function.

4) Fully connected layer with 48 output nodes and ReLu

activation function.

5) Fully connected layer with 24 output nodes and linear

activation function.

At each time step, the network receives a matrix of input

data consisting of previous week and day’s consumption,

and outputs the entire next day’s gas consumption. Figure 2

describes the structure of the network. We fed the inputs to

the Stacked LSTM, the output of which flows into the Dense

Layer. The Dense layer finally has 24 outputs for a 24-hour

ahead forecast.

11) Hyperparameter Selection: For all the LSTM models

we optimize the following hyperparameters - the number of

layers, hidden nodes, and the activation function types. We
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Fig. 3: Example outputs produced by all GAM, LSTM 1 and LSTM 2 for four different time durations for Building 1. Each

column represents the forecasting result of the three different methods and each row is a different time duration.

(a) LBNL hourly (b) ACF LBNL 24hr Difference (c) PACF LBNL 24hr Difference

Fig. 4: Characteristics of LBNL Building

RMSE NRMSE R-sq
Method Parameters Train Test Train Test Train Test

Baseline GAM Eqn 9 2.77 3.79 0.18 0.26 0.56 0.22

Baseline GAM + ARIMA Eqn 9 + ARIMA (0, 0, 1)(0, 0, 1)24 - 2.81 - 0.11 - 0.50

Auto-regressive GAM Eqn 10 2.23 2.68 0.10 0.15 0.71 0.59

Linear Regression yt ∼ xt−24 + day +month+ hour 2.35 2.77 0.11 0.14 0.68 0.56

SARIMA ARIMA (0, 1, 1)(0, 1, 1)24 1.11 2.86 0.042 0.12 0.92 0.60

Random Forest - 2.02 2.78 0.10 0.18 0.75 0.56

RNN Look back = 48 1.89 2.33 0.07 0.09 0.80 0.68

LSTM Look back = 24 1.97 2.28 0.07 0.08 0.78 0.70

LSTM Look back = 48 1.89 2.43 0.07 0.09 0.80 0.65

LSTM Look back = 96 1.82 3.16 0.07 0.12 0.82 0.40

LSTM Look back = 168 1.93 2.83 0.07 0.11 0.79 0.52

LSTM Look back = 336 2.06 2.68 0.08 0.10 0.76 0.57

TABLE IV: Comparison of Forecasting Results for LBNL Gas Data

a) Baseline GAM: The baseline GAM model we constructed

is
yt ∼ s(hour, k = 24, by = Day) +Hour +Day +Month (9)

Since we don’t have any exogenous variables hence they

cannot be modeled in this case.

b) Residual Modeling: We model the residuals of the base-

line model with a SARIMA(p, d, q)(P,D,Q)24 model. Box-

Jenkins test [17] gives the parameters of the SARIMA model.

c) Auto-regressive GAM: The auto regressive GAM model

is given as
yt ∼ LastDayGas+ s(hr, k = 24, by = D) + hr+D+M (10)

d) LSTM: Since the data is univariate, we perform a multi-

step forecast to obtain 24 hours ahead forecast. We varied

the training window size from 2 weeks to a day to check the

effects on the forecast. The LSTM requires a large dataset so

we decided to shift the window at an hourly rate. We trained

on 1-year data, and test on the remaining 6 months and split

the training data into 80 and 20 ratio to create training and

validation sets. The variable parameter here is Look back,

which is the window of time that we look back to forecast

ahead. The model applied for performing forecast with LSTM:

1) Input: Previous time window hour data.

2) LSTM layer 1 with nodes N = 32 and ReLu activation

function.

3) Stacked LSTM layer 2 with nodes N = 32 and ReLu

activation function.

4) Fully connected layer with 24 output nodes and linear

activation function.

e) Comparison with other Models: We compare the results

with other models like LR, SARIMA, RF, and RNN. In
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Table IV we present our results. The baseline GAM model

used is given in Eqn 9 and we model the residuals by

an ARIMA(0, 1, 1)(0, 1, 1)24 model. The model for auto-

regressive GAM is given in Equation 10 which outperforms

LR, SARIMA, multi-stage GAM and even RF. However, the

recurrent networks give the better results and of which the

LSTM with a Look back of 24- hours gives the best result.

Unlike the Building 1 model, the multi-step forecast works

best for the LBNL dataset. We checked for the different time

windows for consumption and found that a window of 24 hours

is enough to forecast 24 hours ahead.

C. Building Forecasting

We investigated a number of approaches for building gas

consumption forecasting for two different buildings’ data.

Availability of exogenous data like weather, occupancy, elec-

tricity usage etc, helps generalize the consumption model.

For a BMS system, where interpretability is a key issue that

helps understand. In the heart of this empirical study, are

two methods which lie in two opposite spectrum - GAM and

LSTM, where there is a tradeoff between comprehension of

the process and the accuracy.

V. CONCLUSIONS AND FUTURE WORKS

In this study, we presented two approaches to gas

consumption forecasting, where we demonstrated the efficacy

of LSTM and GAM for forecasting and interpreting the model,

compared the performances of these approaches to LR, RF,

RNN, and SARIMAX. To the best of our knowledge, this

represents the first study of gas consumption forecasting with

these methods, and is a significant step towards a better

management of energy production systems. The approaches

were validated on two datasets - one from 4 years of gas

consumption data and the influence of each feature on the

forecasting performance was provided. The other one is a

publicly available dataset which does not have any weather

features.

The best performance for GAM is obtained when we

use in our model an auto-regression of gas consumption, on a

weekly and daily basis, in conjunction with the weather vari-

ables and restricted to the temperature. While for LSTM the

best results were obtained also with both the auto-regression

of gas consumption, on a weekly and daily basis, along with

the weather variables which are the outside air temperature

and the solar luminescence.

The benefit of GAM is that it is capable of handling

random missing data by modeling the data as a sum of splines

which interpolate the missing data. Also, the other advantage

of GAM is to gain interpretable insights regarding the data and

the covariates. Deep Learning, on the other hand, can provide

better forecasting results with lesser generalization error and

higher accuracy, but falls short when it comes to handling

missing data and providing insights.

Although LSTM provides the best forecasting gas con-

sumption, there are rooms for improvements. In future work,

we will investigate multi-step forecasting and check whether

Convolutional LSTM [19] and Seq2Seq LSTM [20] model

can help improve the performance, for periodic and multi-

seasonal data.
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